Backwater Calculation Notes

Last updated January 26, 2023
By Ian Story

Formulas to calculate the maximum flow in a pipe, based on backwater effects

Limit for velocity-controlled flow

    \[Q \leq 10A\]

Limit for outlet-controlled flow

    \[Tailwater + Friction Loss + Velocity Head + Minor Head Losses - Velocity Head_a_b_v \leq Rim Elevation\]


    \[Friction Loss + Velocity Head + Minor Head Losses \leq Rim Elevation - Tailwater + Velocity Head_a_b_v\]


    \[v^2(\frac{n^2L}{0.351D^1^.^3^3} + \frac{1+k_e+k_b+k_j}{2g}) \leq Rim Elevation - Tailwater + \frac{v_a_b_v^2}{2g}\]


    \[v \leq \sqrt{\frac{Rim Elevation - Tailwater + \frac{v_a_b_v^2}{2g}}{\frac{n^2L}{0.351D^1^.^3^3} + \frac{1+k_e+k_b+k_j}{2g}}}\]


    \[Q \leq A\sqrt{\frac{Rim Elevation - Tailwater + \frac{v_a_b_v^2}{2g}}{\frac{n^2L}{0.351D^1^.^3^3} + \frac{1+k_e+k_b+k_j}{2g}}}\]

Limit for submerged inlet-controlled flow

    \[Inlet Invert Elevation + Inlet Headwater Depth + Minor Head Losses - Velocity Head_a_b_v \leq Rim Elevation\]


    \[Inlet Headwater Depth + Minor Head Losses \leq Rim Elevation - Inlet Invert Elevation + Velocity Head_a_b_v\]


    \[cD(\frac{Q}{AD^0^.^5})^2 + Y - 0.5S + v^2\frac{1+k_b+k_j}{2g} \leq Rim Elevation - Inlet Invert Elevation + \frac{v_a_b_v^2}{2g}\]


    \[\frac{Q^2}{A^2}(c + \frac{1+k_b+k_j}{2g}) \leq Rim Elevation - Inlet Invert Elevation + \frac{v_a_b_v^2}{2g} - Y + 0.5S\]


    \[Q \leq A\sqrt{\frac{Rim Elevation - Inlet Invert Elevation + \frac{v_a_b_v^2}{2g} - Y + 0.5S}{c + \frac{1+k_b+k_j}{2g}}}\]

Limit for unsubmerged inlet-controlled flow

    \[Inlet Invert Elevation + Inlet Headwater Depth + Minor Head Losses - Velocity Head_a_b_v \leq Rim Elevation\]


    \[Inlet Headwater Depth + Minor Head Losses \leq Rim Elevation - Inlet Invert Elevation + Velocity Head_a_b_v\]


    \[H_c + K(\frac{Q}{AD^0^.^5})^M + v^2\frac{1+k_b+k_j}{2g} \leq Rim Elevation - Inlet Invert Elevation + \frac{v_a_b_v^2}{2g}\]