Derivation: Pinned-Pinned Column with Load Applied at Arbitrary Location

Last updated November 18, 2022
By Ian Story

Position the load a distance b from the bottom and a from the top

The top and bottom of the beam will have different deflection equations.

Reactions

(1)   \begin{equation*}\Sigma M_0 = -P_c_rv_B(b) + RL = 0\end{equation*}

(2)   \begin{equation*}R = \frac{P_c_rv_B(b)}{L}\end{equation*}

Bottom

(3)   \begin{equation*}\Sigma M_x = M(x) + P_c_rv_B(x)- Rx = 0\end{equation*}

(4)   \begin{equation*}M(x) = -P_c_rv_B(x) + Rx = -P_c_rv_B(x) + \frac{P_c_rv_B(b)x}{L}\end{equation*}

(5)   \begin{equation*}M(x) + P_c_rv_B(x) - \frac{P_c_rv_B(b)x}{L}\end{equation*}

Use moment-curvature relationship: EIv''(x) = M(x)

(6)   \begin{equation*}EIv_B''(x) + P_c_rv_B(x) - \frac{P_c_rv_B(b)x}{L} = 0\end{equation*}

(7)   \begin{equation*}v_B''(x) + k^2v_B(x) - \frac{k^2v_B(b)x}{L} = 0\end{equation*}

where:

(8)   \begin{align*}k  = \sqrt{\frac{P_c_r}{EI}} \\\end{align*}

Use general solution for column buckling differential equation. Set the final integration constant to zero due to boundary condition (v_B(0) = 0)

(9)   \begin{equation*}v_B(x) = Asin(kx) + Bcos(kx) + Cx\end{equation*}

where:

(10)   \begin{align*}C  = \frac{v_B(b)}{L} \\\end{align*}

Check solution works:

(11)   \begin{equation*}v_B'(x) = Akcos(kx) - Bksin(kx) + C\end{equation*}

(12)   \begin{equation*}v_B''(x) = -Ak^2sin(kx) - Bk^2cos(kx)\end{equation*}

(13)   \begin{equation*}[-Ak^2sin(kx) - Bk^2cos(kx)] + k^2[Asin(kx) + Bcos(kx) + \frac{v_B(b)x}{L}] - \frac{k^2v_B(b)x}{L} = 0\end{equation*}

All the terms cancel out and we get 0 = 0, so this solution works

Top

(14)   \begin{equation*}\Sigma M_x = M(x) + Rx = 0\end{equation*}

(15)   \begin{equation*}M(x) = -Rx = -\frac{Pv_B(b)x}{L}\end{equation*}

Use moment-curvature relationship: v''(x) = EIM(x)

(16)   \begin{equation*}EIv_T''(x) = \frac{-Pv_B(b)x}{L}\end{equation*}

(17)   \begin{equation*}v_T''(x) = \frac{-k^2v_B(b)x}{L}\end{equation*}

where:

(18)   \begin{align*}k  = \sqrt{\frac{P_c_r}{EI}} \\\end{align*}

Integrate twice, setting the final integration constant to zero due to boundary condition (v_T(0) = 0

(19)   \begin{equation*}v_T(x) = \frac{-k^2v_B(b)x^3}{6L}+Dx\end{equation*}

Boundary Conditions

The moment for the bottom section at x = 0 is zero (pin connection), which gives us the following boundary condition:

(20)   \begin{align*}v_B''(0) = 0 \\\end{align*}

The two sections meet at the point of load, which gives us three additional boundary conditions:

(21)   \begin{align*}v_B(b) = v_T(a) \\v_B'(b) = -v_T'(a) \\v_B''(b) = v_T''(a) \\\end{align*}

Solve for First Boundary Condition

(22)   \begin{equation*}v_B''(0) = -Ak^2sin(0) - Bk^2cos(0) = 0 \Longrightarrow B = 0\end{equation*}

Solve for Second Boundary Condition

(23)   \begin{equation*}v_B(b) = Asin(kb) + Cb = \frac{-k^2v_B(b)a^3}{6L}+Da = v_T(a)\end{equation*}

(24)   \begin{equation*}Asin(kb) + Cb = \frac{-k^2(Asin(kb) + Cb)a^3}{6L}+Da\end{equation*}

(25)   \begin{equation*}Da = (Asin(kb) + Cb)(1 + \frac{-k^2a^3}{6L})\end{equation*}

(26)   \begin{equation*}D = E(Asin(kb) + Cb)\end{equation*}

where:

(27)   \begin{align*}E  = \frac{1}{a} + \frac{k^2a^2}{6L} \\\end{align*}

Solve for Third Boundary Condition

(28)   \begin{equation*}v_B'(b) = Akcos(kb) + C = F(Asin(kb) + Cb)-E(Asin(kb) + Cb) = -v_T'(a)\end{equation*}

where:

(29)   \begin{align*}F  = \frac{k^2a^2}{2L} \\\end{align*}

(30)   \begin{equation*}Akcos(kb) - FAsin(kb) + EAsin(kb) = FCb - ECb - C\end{equation*}

(31)   \begin{equation*}A[kcos(kb) - Fsin(kb) + Esin(kb)] = C[Fb - Eb - 1]\end{equation*}

(32)   \begin{equation*}\frac{A}{C} = \frac{Fb - Eb - 1}{kcos(kb) - Fsin(kb) + Esin(kb)}\end{equation*}

Solve for Fourth Boundary Condition

(33)   \begin{equation*}v_B''(b) = -Aksin(kb) = -G(Asin(kb) + Cb) = v_T''(a)\end{equation*}

where:

(34)   \begin{align*}G  = \frac{k^2a}{L} \\\end{align*}

(35)   \begin{equation*}-Ak^2sin(kb) + GAsin(kb) = -GCb\end{equation*}

(36)   \begin{equation*}\frac{A}{C} = \frac{Gb}{k^2sin(kb) - Gsin(kb)}\end{equation*}

Equate and Collect Terms

(37)   \begin{equation*}\frac{Fb - Eb - 1}{kcos(kb) - Fsin(kb) + Esin(kb)} = \frac{Gb}{k^2sin(kb) - Gsin(kb)}\end{equation*}

(38)   \begin{equation*}(Fb - Eb - 1)(k^2sin(kb) - Gsin(kb)) = Gb(kcos(kb) - Fsin(kb) + Esin(kb))\end{equation*}

Divide both sides by sin(kb)

(39)   \begin{equation*}(Fb - Eb - 1)(k^2 - G) = Gb(kcot(kb) - F + E)\end{equation*}

(40)   \begin{equation*}Fk^2b - FGb - Ek^2b + EGb - k^2 + G = Gkbcot(kb) - FGb + EGb\end{equation*}

(41)   \begin{equation*}Fk^2b - FGb - Ek^2b + EGb - k^2 + G - Gkbcot(kb) + FGb - EGb = 0\end{equation*}

Expand and Simplify

(42)   \begin{equation*}(\frac{k^2a^2}{2L})k^2b - (\frac{k^2a^2}{2L})(\frac{k^2a}{L})b - (\frac{1}{a} + \frac{k^2a^2}{6L})k^2b + (\frac{1}{a} + \frac{k^2a^2}{6L})(\frac{k^2a}{L})b - k^2 + (\frac{k^2a}{L}) - (\frac{k^2a}{L})kbcot(kb) + (\frac{k^2a^2}{2L})(\frac{k^2a}{L})b - (\frac{1}{a} + \frac{k^2a^2}{6L})(\frac{k^2a}{L})b = 0\end{equation*}

(43)   \begin{equation*}\frac{k^4a^2b}{2L} - \frac{k^4a^3b}{2L^2} - \frac{k^2b}{a} - \frac{k^4a^2b}{6L} + \frac{k^2b}{L} + \frac{k^4a^3b}{6L^2} - k^2 + \frac{k^2a}{L} - \frac{k^3ab}{L}cot(kb) + \frac{k^4a^3b}{2L^2} - \frac{k^2b}{L} - \frac{k^4a^3b}{6L^2} = 0\end{equation*}

Cancel terms (note: a + b = L, so \frac{k^2b}{L} + \frac{k^2a}{L} = k^2)

(44)   \begin{equation*}\frac{k^4a^2b}{3L} - \frac{k^3ab}{L}cot(kb) - \frac{k^2b}{a} - \frac{k^2b}{L} = 0\end{equation*}

Multiply by L

(45)   \begin{equation*}\frac{k^4a^2b}{3} - k^3abcot(kb) - k^2b(\frac{L}{a} + 1) = 0\end{equation*}

Multiply by b^3

(46)   \begin{equation*}\frac{k^4a^2b^4}{3} - k^3ab^4cot(kb) - k^2b^4(\frac{L}{a} + 1) = 0\end{equation*}

(47)   \begin{equation*}\frac{a^2}{3}X^4 - abcot(X)X^3 - b^2(\frac{L}{a} + 1)X^2 = 0\end{equation*}

where:

(48)   \begin{align*}X  = kb \\\end{align*}

Graph to Find Values

This is a transcendental equation, so there is no algebraic solution. We will need to use a graphing utility or numeric solver to identify roots. Solving the above equation for a range of values gives the following table.

Effective length factors are calculated by converting to the standard column buckling format:

(49)   \begin{equation*}kb = b\frac{L}{L}\sqrt{\frac{P_c_r}{EI}}\end{equation*}

(50)   \begin{equation*}\frac{\frac{kb}{\pi(b/L)}\pi}{L} = \sqrt{\frac{P_c_r}{EI}}\end{equation*}

(51)   \begin{equation*}\frac{\pi}{KL} = \sqrt{\frac{P_c_r}{EI}}\end{equation*}

(52)   \begin{equation*}\frac{\pi^2}{(KL)^2} = \frac{P_c_r}{EI}\end{equation*}

(53)   \begin{equation*}P_c_r = \frac{\pi^2EI}{(KL)^2}\end{equation*}

where:

(54)   \begin{align*}K  = \frac{\pi(b/L)}{kb} \\\end{align*}

b/LkbEffective Length Factor (K)
1.003.1411.00
0.953.1340.95
0.903.1100.91
0.853.0700.87
0.803.0130.83
0.752.9360.80
0.702.8350.78
0.652.7080.75
0.602.5510.74
0.552.3660.73
0.502.1600.73
0.451.9450.73
0.401.7310.73
0.351.5240.72
0.301.3270.71
0.251.1410.69
0.200.9620.65
0.150.7870.60
0.100.6080.52
0.050.4080.38
0.000.0000.00