Singly Reinforced Concrete Beam Strength Limits

Last updated January 5, 2024
By Ian Story

Moment Capacity

Given: axial force, P (tension positive), which may include axial tension from torsion

Assumptions: one layer of rebar near tension face is resisting all tension; ignore rebar layer near compression face

Variables:

P = applied axial force (tension positive)
F_C = resultant force at concrete compression block (tension positive / compression negative)
F_T = resultant force at tension rebar (tension positive)
d = distance from extreme compression fiber to center of tension rebar
d_t = distance from extreme compression fiber to center of top rebar (typically in the compression zone)
A_c = area of compression block
A_s = cross-sectional area of tension rebar
\epsilon_c = -0.003 concrete strain at failure
\epsilon_s = steel strain at failure
b = width of concrete at extreme compression fiber
a = height of compression block
c = distance from extreme compression fiber to neutral axis
\beta_1 = 0.85 = ratio between height of compression block and distance from extreme compression fiber to neutral axis
d_m = moment arm / distance between compression resultant and tension resultant
M_n = nominal moment capacity of beam
E_s = 29,000,000\text{ psi}= modulus of elasticity of steel

Scenario 1 – Typical Beam

Scenario criteria:
F_C > 0
\epsilon_s >= \epsilon_y

    \[\Sigma F = P - F_C - F_T = 0\]

    \[F_C=P-F_T\]

    \[F_T=A_sf_y\]

    \[A_c = -\frac{F_C}{0.85f_c'} = a*b\]

    \[a = -\frac{F_C}{0.85f_c'b} = \beta_1 c\]

    \[c = -\frac{F_C}{0.85f_c'b\beta_1}\]

    \[d_m = d - \frac{a}{2}\]

    \[M_n = F_Td_m\]

    \[\epsilon_s = \epsilon_c\left(\frac{d}{c}-1\right)\]

Putting all the pieces together gives:

    \[M_n = A_sf_y\left(d + \frac{P-A_sf_y}{2*0.85f_c'b}\right)\]

    \[\epsilon_s = -\epsilon_c\left(\frac{0.85f_c'b\beta_1d}{P-A_sf_y}+1\right)>\epsilon_y\]

Check assumptions:

    \[P < A_sf_y\]

    \[\frac{0.85f_c'b\beta_1d}{P-A_sf_y}<\frac{\epsilon_y}{-\epsilon_c}-1\]

Scenario 2 – Compression Controlled

Scenario criteria:
\epsilon_s < \epsilon_y

    \[\Sigma F = P - F_C - F_T = 0\]

    \[F_C=P-F_T\]

    \[F_T=A_s\epsilon_sE_s\]

    \[A_c = -\frac{F_C}{0.85f_c'} = a*b\]

    \[a = -\frac{F_C}{0.85f_c'b} = \beta_1 c\]

    \[c = -\frac{F_C}{0.85f_c'b\beta_1}\]

    \[d_m = d - \frac{a}{2}\]

    \[M_n = F_Td_m\]

    \[\epsilon_s = \epsilon_c\left(\frac{d}{c}-1\right)\]

Use some algebra to find \epsilon_s:

    \[\epsilon_s = 0.003\left(\frac{0.85f_c'b\beta_1d}{F_C}+1\right)\]

    \[\epsilon_s = 0.003\left(\frac{0.85f_c'b\beta_1d}{P-A_s\epsilon_sE_s}+1\right)\]

    \[\left(\epsilon_s\frac{1}{0.003}-1\right)(P-A_s\epsilon_sE_s) = 0.85f_c'b\beta_1d\]

    \[\epsilon_s^2\left(\frac{A_sE_s}{0.003}\right)+\epsilon_s\left(-A_sE_s-\frac{P}{0.003}\right)+\left(P+0.85f_c'b\beta_1d\right) = 0\]

Solve for \epsilon_s using quadratic formula then plug in to find M_n

    \[M_n = A_s\epsilon_sE_s\left(d + \frac{P-A_s\epsilon_sE_s}{2*0.85f_c'b\beta_1}\right)\]

Scenario 3 – No Compression

Scenario criteria:
F_C = 0
\epsilon_s >= 0.005

    \[\Sigma F =P-F_{T1}-F_{T2}=0\]

    \[\Sigma M_{h/2} =M_n+F_{T1}d_{h1}-F_{T2}d_{h2}=0\]

Maximum moment occurs at

    \[F_{T2}=A_{s2}f_y\]

    \[F_{T1} = P-F_{T2}\]

    \[M_n=F_{T2}d_{h2}-F_{T1}d_{h1}\]

Putting the pieces together gives:

    \[M_n=A_{s2}f_yd_{h2}+(A_{s2}f_y-P)d_{h1}\]

Tension Limit

Given moment

    \[P=\left(d-\frac{M}{A_sf_y}\right)(2*0.85f_cb)-A_sf_y\]

This equation works as long as F_C<0, which occurs at:

    \[P=A_sf_y\]

    \[M=\left(d-\frac{2A_sf_y}{2*0.85f_c'b}\right)A_sf_y\]

For moments below this threshold, the maximum tension will put the member into pure tension flexure (no compression)

    \[\Sigma F =P-F_{T1}-F_{T2}=0\]

    \[\Sigma M_{h/2} =M_n-F_{T1}d_{h1}+F_{T2}d_{h2}=0\]

Unless the applied moment is very small, maximum tension occurs at

    \[F_{T1}=A_{s1}f_y\]

    \[F_{T2}d_{h2}=A_{s1}f_yd_{h1}-M_n\]

    \[F_{T2}=\frac{A_{s1}f_yd_{h1}-M_n}{d_{h2}}\]

    \[P=F_{T1}+F_{T2}=A_{s1}f_y+\frac{A_{s1}f_yd_{h1}-M_n}{d_{h2}}\]

Where the second term has a maximum value of A_{s2}f_y

Compression Limit

Given moment

Scenario 1: Compression Controlled

Scenario criteria:
\epsilon_s < 0.005

    \[F_T=A_s\epsilon_sE_s\]

With a bunch of algebra:

    \[\epsilon_s^2(2dA_sE_s)+\epsilon_s(\epsilon_cdA_sE_s-2M)-2\epsilon_cM=0\]

Solve for \epsilon_s using quadratic formula the plug into the following equation to find P

    \[P=\frac{A_s\epsilon_sE_s(\epsilon_c+\epsilon_s)-0.85f_c'bd\beta_1\epsilon_c}{\epsilon_c+\epsilon_s}\]

Scenario 2: Tension Controlled

Scenario criteria:
\epsilon_s >= 0.005

    \[F_T=A_sf_y\]

    \[P=2*0.85f_c'b\left(\frac{M}{A_sf_y}-d\right)+A_sf_y\]